A Mean Value Theorem for the Heat Equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volume mean densities for the heat equation

It is shown that, for solid caps D of heat balls in Rd+1 with center z0 = (0, 0), there exist Borel measurable functions w on D such that inf w(D) > 0 and ∫ v(z)w(z) dz ≤ v(z0), for every supertemperature v on a neighborhood of D. This disproves a conjecture by N. Suzuki and N.A. Watson. On the other hand, it turns out that there is no such volume mean density, if the bounded domain D in Rd × (...

متن کامل

The First Mean Value Theorem for Integrals

For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...

متن کامل

The Mean Value Theorem and Its Consequences

The point (M,f(M)) is called an absolute maximum of f if f(x) ≤ f(M) for every x in the domain of f . The point (m, f(m)) is called an absolute minimum of f if f(x) ≥ f(m) for every x in the domain of f . More than one absolute maximum or minimum may exist. For example, if f(x) = |x| for x ∈ [−1, 1] then f(x) ≤ 1 and there are absolute maxima at (1, 1) and at (−1, 1), but only one absolute mini...

متن کامل

A mean value theorem for systems of integrals

Abstract. More than a century ago, G. Kowalewski stated that for each n continuous functions on a compact interval [a, b], there exists an n-point quadrature rule (with respect to Lebesgue measure on [a, b]), which is exact for given functions. Here we generalize this result to continuous functions with an arbitrary positive and finite measure on an arbitrary interval. The proof relies on a ver...

متن کامل

Mean value theorem for integrals and its application on numerically solving of Fredholm integral equation of second kind with Toeplitz plus Hankel ‎Kernel

‎The subject of this paper is the solution of the Fredholm integral equation with Toeplitz, Hankel and the Toeplitz plus Hankel kernel. The mean value theorem for integrals is applied and then extended for solving high dimensional problems and finally, some example and graph of error function are presented to show the ability and simplicity of the ‎method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1966

ISSN: 0002-9939

DOI: 10.2307/2035052